💻🧰📊🥳
Syllabus
Syllabus
Course content
Module 1 - Principles
Week 1 - Principles
Week 2 - Good and bad visualizations
Module 2 - Coding fundamentals
Week 3 - R Markdown
Week 4 - Wrangling
Week 5 - ggplot101
Week 6 - ggplot102
Module 3 - Data exploration
Week 7 - Data distributions
Week 8 - Correlations
Week 9 - Adding statistics
Module 4 - Putting it together
Week 10 - Principal components analysis
Week 11 - Manhattan plots
Week 12 - Interactive plots
Week 13 - Leftovers
Recitations
Module 2 - Coding fundamentals
Week 3 - R Markdown
Week 4 - Wrangling
Week 5 - ggplot101
Week 6 - ggplot102
Module 3 - Data exploration
Week 7 - Data distributions
Week 8 - Correlations
Week 9 - Adding statistics
Module 4 - Putting it together
Week 10 - Principal components analysis
Week 11 - Manhattan plots
Week 12 - Interactive plots
Week 13 - Leftovers
Assignments
Module assignments
Module 1
Module 2
Module 3
Module 4
Reflections
Reflection instructions
Capstone assignment
Capstone instructions
Solutions
Module assignment solutions
Module 2 solutions
Recitation solutions
Week 3 - R Markdown solutions
Week 4 - Wrangling solutions
Week 5 - ggplot101 solutions
Week 6 - ggplot102 solutions
Week 7 - Data distributions solutions
Week 8 - Correlations solutions
Week 9 - Adding statistics solutions
About
About this site
1
+
1
[1] 2
Back to top